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Comparison of canonical and grand canonical models for selected multifragmentation data
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Calculations for a set of nuclear multifragmentation data are made using a canonical and a grand canonical
model. The physics assumptions are identical but the canonical model has an exact number of particles,
whereas the grand canonical model has a varying number of particles, hence, is less exact. Interesting differ-
ences are found.
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I. INTRODUCTION

In experiments whose goals were to investigate the rol
isospin in fragment yields@1#, the following interesting fea-
tures have been observed. If we compare the central c
sions of two heavy ion systems 1 and 2, which are simila
all aspects of the reactions except for the neutron and pr
composition, the isotope yield ratios,Y2(n,z)/Y1(n,z),
whereYi(n,z) is the yield of the isotope with neutron num
ber n, and proton numberz, from reaction i, is found
to exhibit an exponential relationship as a function ofn
andz @1,2#,

Y2~n,z!/Y1~n,z!5C exp~ann1apz!, ~1.1!

whereC is an overall normalization constant andan andap
are fitting parameters. This phenomenon is termed isos
ing, a strong evidence that the processes are statistical.

Related to isoscaling is the exponential dependence o
mirror-nuclei ratios on the binding energy. In Fig. 1, th
ratios of yields of mirror nuclei: Yi(t)/Yi(

3He),
Yi(

7Li)/ Yi(
7Be) andYi(

11B)/Yi(
11C) for central collisions

of 124Sn1124Sn ~solid points! and 112Sn1112Sn ~open
points! at 50 MeV per nucleon are plotted as a function
the binding energy differenceDEB . These ratios fall ap-
proximately on an exponential. Many statistical models su
as the grand canonical model@3,4# of multifragmentation
predict both the isoscaling and mirror-nuclei ratio depe
dence.

Experimental evidence suggests that multifragmenta
occurs when the heated matter expands to density about
third of nuclear matter density@5# and the time scale for the
emission of fragments is short, between 50 and 100 fm/c @6#.
Most successful statistical models that describe multifr
mentation data assume a freeze-out volume at which c
posite yields are to be calculated entirely according to ph
space@7,8#. If the dissociating system is very large, the
grand canonical simplification can be employed@3,4#. Ac-
cording to this model, the average number of compos
with neutron numberi and proton numberj is

^ni , j&5 exp@b~ imn1 j mp!#v i , j , ~1.2!

wheremn ,mp are neutron and proton chemical potentials a
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h3
@2p~ i 1 j !mT#3/2~2s11!zint exp~bEB! ~1.3!

is the partition function of one composite.b is the inverse
temperature. For mirror nuclei:i 5k11,k and j 5k,k11 we
should simply have

^nk11,k&

^nk,k11&
5 exp~bmn2bmp!exp~bDEB!. ~1.4!

Thus the log of the ratios of the yield will be linear wit
respect toDEB that is approximately obeyed by data. How
ever a more close inspection raises another issue.

According to Eq.~1.4!, one can deduce the value ofb
51/T from the slope of the line. Indeed for the lines draw
in Fig. 1, the temperatureT is less than 2 MeV. For such
low temperature, the model of simultaneous breakup mo
@7,8# should not be appropriate. In addition, such low valu
are in direct contradictions with temperature measureme
obtained from isotope yield ratios. The isotope yield te
perature is about 5 MeV for the Sn1Sn systems@9,10#. To

FIG. 1. Isobar ratios for three pairs of mirror nuclei obtain
from the central collisions of 124Sn1124Sn ~solid points!
and 112Sn1112Sn ~open points! collisions. The lines are best fit o
Eq. ~1.4!.
©2001 The American Physical Society08-1
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resolve the discrepancies between temperatures observ
is necessary to explore details of the exponential behavio
the mirror nuclei.

II. CANONICAL VS GRAND CANONICAL MODELS

In recent years, the grand canonical model has been
placed by a canonical model. The physics assumptions
still the same but we no longer have to assume that the
tem is large. This is a technical advancement; the det
have already been described in several places@11–13# so we
will not repeat these here. The model has been used to fi
isotope data@12,14#. Surprisingly, isoscaling that follows
naturally from the grand canonical model, emerges also
canonical model@14#. In this paper, we will investigate why
certain results from the canonical model resemble those f
the grand canonical model and what are the differences.
will also investigate the relation between the canonical te
perature and the temperature obtained based on the sim
grand canonical rules.

The yield of the composite that hask11 neutrons andk
protons is given in the canonical model by

^nk11,k&5vk11,k

QN2k21,Z2k

QN,Z
. ~2.1!

HereN,Z refer to the number of neutrons and protons of
disintegrating system.QN,Z is the canonical partition func
tion of this system. Similarly,QN2k21,Z2k is the canonical
partition function of the residue system that hasN2k21
neutrons andZ2k protons. The ratio of the yields in th
canonical model is then given by

^nk11,k&

^nk,k11&
5

vk11,k

vk,k11

QN2k21,Z2k

QN2k,Z2k21
. ~2.2!

The first factor leads to exp(bDEB). We note in passing tha
for mirror nuclei DEB5DEC , the change in Coulomb en
ergy. If we assume a uniformly charged sphere, thenDEc
5 3

5 e2/R0a1/3@(z11)22z2#50.72a2/3 MeV, where a is the
composite mass number. For light nuclei 0.72a2/3 MeV does
not fit the data very well. We note for later use that 0.23a
MeV fits DEB betweena57 anda515 better.

The exact expression for the canonical partition funct
QN,Z used in@14# does not allow us to investigate easily th
features we want to study. Since the ratios are very simpl
the grand canonical ensemble and since there is a conne
ha
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between grand canonical partition functionZgr(ln ,lp) @l
5bm, of Eq. ~1.4!# and the canonical partition functio
QN,Z , we find it convenient to exploit this relation. In th
present problem, the grand canonical partition function
given by

Zgr~ln ,lp!5)
k,l

(
nk,l

exp@~kln1 llp!nkl#
vk,l

nk,l

nk,l !
. ~2.3!

The expression for lnZgr(ln ,lp) is

lnZgr~ln ,lp!5(
k,l

exp~kln1 llp!vk,l . ~2.4!

The canonical partition function can be obtained fromZgr by
Laplace inverse:

QN,Z5
1

~2p!2E2p

p E
2p

p

e2(ln1 i l̃n)Ne2(lp1 i l̃p)Z

3exp@ ln Zgr~ln1 i l̃n ,lp1 i l̃p!#dl̃ndl̃p .

~2.5!

While this expression is true for anyln andlp , the saddle-
point approximation consists in choosing the values ofln

andlp such that the kernel maximizes atl̃n50 andl̃p50
and making a Gaussian approximation for the integra
around this maximum. The result is

QN,Z'e2(lnN1lpZ)exp@ ln Zgr~ln ,lp!#/~2p* udetu1/2!,
~2.6!

where the values ofln and lz are such that the averag
numbers of neutrons and protons as obtained from the g
canonical ensemble areN andZ, i.e.,

N5
] ln Zgr~ln ,lp!

]ln
, ~2.7!

Z5
] ln Zgr~ln ,lp!

]lp
. ~2.8!

The elements of the determinant are given bya1,1
5]2 ln Zgr /]

2ln , a1,25a2,15]2 ln Zgr /]ln]lp , and a2,2
5]2 ln Zgr /]

2lp .
Equation~2.2! now takes the form
^nk11,k&

^nk,k11&
'ebDEB

exp$2@ln~N2k21!1lp~Z2k!#1 ln Zgr~ln ,lp!%

exp$2@ln8~N2k!1lp8~Z2k21!#1 ln Zgr~ln8 ,lp8!%
. ~2.9!
f

Here we have omitted the ratios of the determinantsudetu1/2

because their effects will be negligible. Equation~2.9! will
reduce to the standard grand canonical result if we setln

5ln8 ;lp5lp8 and take these values from a system that
 s

the average number of neutrons to beN ~rather thanN2k
21 to getln andN2k to getln8) and the average number o
protons to beZ ~rather thanZ2k to obtain lp and Z2k
21 to obtainlp8).
8-2
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For a better estimate, let us writeln85ln1Dln ;lp85lp

1Dlp . Assuming lowest order expansion is valid we c
get @depending upon whether we expand lnZgr(ln ,lp) in
terms of lnZgr(ln8 ,lp8) or vice versa#. exp$@ln Zgr(ln ,lp)
2 ln Zgr(ln8 ,lp8)#%5 exp@2Dln(N2k21)2Dlp(Z2k)#, or
exp@2Dln(N2k)2Dlp(Z2k21)#.

Equation ~2.9! can be reduced tô nk11,k&/^nk,k11&
'ebDEBeln2lp'ebDEBeln82lp8 .

We will use

^nk11,k&

^nk,k11&
'ebDEB exp@~ln1ln82lp2lp8!/2#. ~2.10!

Equation~2.10! looks just like a grand canonical result b
with an important difference. In the usual grand canoni
modelln ,lp would be calculated just once, from Eqs.~2.7!
and~2.8! whereN andZ are the neutron and proton numbe
of the disintegrating system. By contrast,ln ,lp, etc., of Eq.
~2.10! are calculated from Eqs.~2.7! and~2.8! for eachk and
the left-hand sides of Eqs.~2.7! and ~2.8! are given byN
2k21 andZ2k, respectively. The quantityln2lp etc. in-
creases withk with the result that if we try to interpret th
canonical results within a usual grand canonical framew
one ends up with a largerb, that is, a lowerT. Let us expand
on this. In the canonical model, the slope of the log of
mirror-yield ratio depends not solely onbDEB , but also on
another factor that depends on the mass of the fragment,
hence it also varies withDEB . Thus the slope of the curve i
the canonical approach does not give a simple measureT
as it would in the grand canonical approach. This is dem
strated in Fig. 2 where it is shown that although the tempe
ture used for the canonical calculation~hence the true tem
perature! is 5 MeV, deducing the temperature from the slo
of the mirror isotope yield ratios~as one would do in a gran
canonical formalism! one would arrive at a significantly
lower temperature. The best fit~solid line! to the calculated
values from the canonical model~solid points! yield a tem-
perature of 3.4 MeV. In the figure we also show that t
approximation of Eq.~2.10! as shown by the star points
works quite well.

The dependence ofln2lp on k andN,Z where 2k11 is
the mass number of the emitted particle andN,Z gives the
size of the emitting system can be pinned down further.
LN ,LP be the lambda values of the systemN,Z. We will
write ln5LN1dlN and lp5LP1dlP . We then haveN
2k215( iv i , j exp(iln1jlp). Expressingln ,lp in terms of
LN ,LP and approximating exp(dLP)'(11dLP), etc. we get
2k215AdLN1BdLP where A and B are constants:A
5( i 2v i , j exp(iLN1jLP) and B5( i j v i , j exp(iLN1jLP).
Similarly starting fromN2k5( j v i , j exp(iln1jlp) and ex-
panding as above we get2k5BdLN1CdLP where C
5( j 2v i , j exp(iLN1jLP). One can now expressdLN ,dLP
in terms of the constantsA,B andC. We get

ln2lp5LN2LP1
C2A

B22AC
k1

C1B

B22AC
. ~2.11!
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We can do a similar analysis forln82lp8 . Finally we get
@compare Eq.~2.10!#

~ln1ln82lp2lp8!/25LN2LP1
1

2

C2A

B22AC
~2k11!.

~2.12!

Equation ~2.12! says that the correction grows like 2k11
5a, the mass of the composite. The correction would dim
ish as the disintegrating system (N,Z) grows. The constants
A, B, andC are positive definite and each will become larg
and larger as the disintegrating system becomes larger.
correction would disappear in the thermodynamic limit. T
actual values of the constantsA, B, andC for a finite system
depend on many factors: the symmetry energy, the Coulo
energies andN,Z of the disintegrating system.

III. THE ALBERGO TEMPERATURE

The Albergo formula@4# has often been used to extract
temperature from experimental data. The formula is exac
the following two assumptions are valid:~1! the populations
of various states are given by the grand canonical model
~2! the secondary decays that will alter these primary po
lations can be neglected. Define a ratioR

R5
Y~Ai ,Zi !/Y~Ai11,Zi !

Y~Aj ,Zj !/Y~Aj11,Zj !
, ~3.1!

FIG. 2. Exact canonical model calculations for a system of n
tron numberN5104 andZ570 using a freeze-out density of one
quarter of normal density. This simulates central124Sn1124Sn col-
lisions. Lower values ofN and Z used in this calculation reflec
effects of preequilibrium emissions. The ratios of yields of mirr
nuclei are plotted fora51, 3, 7, 9, 11, and 13. The results for 3,
and 11 can be compared with the experimental results~Fig. 1!.
Tactual55 MeV is the temperature used in the canonical mo
calculation;Tbest f it would be the temperature deduced if one fit t
solid points obtained from the canonical calculations, using
grand canonical formula, Eq.~1.4!. The results from a saddle-poin
Eq. ~2.10! approximation are also shown.
8-3
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where theY’s are the yields in the ground state. Then, t
temperature is given by

T5
B

ln~sR!
, ~3.2!

whereB is related to binding energies ands to the ground
state spins:

B5BE~Ai ,Zi !2BE~Ai11,Zi !

2BE~Aj ,Zj !1BE~Aj11,Zj ! , ~3.3!

s5
@2S~Aj ,Zj !11#/@2S~Aj11,Zj !11#

@2S~Ai ,Zi !11#/@2S~Ai11,Zi !11#
. ~3.4!

Even if the grand canonical model is exact, the change
populations due to secondary decays can cause Eq.~3.2! to
give significantly different temperatures from the true gra
canonical temperature. This was studied in detail in@15#. It
was shown that for large values ofB @Eq. ~3.3!#, the differ-
ence between apparent temperature and the true gran
nonical temperature decreases. This suggests that while u
the Albergo formula to deduce a temperature from exp
mental data, it is advisable to use pairs that will lead to
large value ofB.

Our objective here is different and is complementary
the study made in@15#. The canonical model is obviousl
more rigorous than the grand canonical model. Howeve
canonical values forR are used, Eq.~3.2! is no longer strictly
correct. Using the primary yields of the ground states,
explore the differences between the deduced tempera
from Eq. ~3.2! compared to the actual temperature used i
canonical model. This is shown in Fig. 3, we find that t
errors in temperature decrease with increasingB. The inset in
Fig. 3 shows the deviation of the canonical Albergo tempe
ture for B greater than 10 MeV. Most of the predicted tem
peratures are slightly lower than the actual temperature
MeV. The deviations arise from the differences between i
tope yields predicted by the canonical and grand canon
models. Not surprisingly, the conclusions of@15# can be ap-
plied here.

Extraction of temperature from mirror-yield curves c
also be cast in Albergo-type formula. The quantity that c
responds toB of Eq. ~3.3! is small for any pair of ratios
shown in Fig. 1. The low temperature~3.4 MeV instead of 5
MeV! obtained from the slope of the yield ratios of the m
04460
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ror nuclei is consistent with the large fluctuations observed
Albergo temperatures extracted from isotopes with sm
binding energy differences.

IV. THE SCALING LAW

The last quantity we want to investigate is a ratio of tw
ratios: (̂ nl 1m,k&2 /^nl 1m,k&1)/(^nl ,k&2 /^nl ,k&1) and see if this
falls on an exponential as in the grand canonical ensem
Here the subscripts 1 and 2 refer to two systems:~for ex-
ample: 2 refers to central collisions of124Sn1124Sn and 1 to
central collisions of 112Sn1112Sn at 50 MeV/nucleon en
ergy!. As this involves two ratios and two different system
the analysis is considerably more complicated than what
considered before. The ratioR we are after is given by

R5
v l 1m,k

(2)

v l ,k
(2)

v l ,k
(1)

v l 1m,k
(1)

QN22 l 2m,Z22k

QN22 l ,Z22k

QN12 l ,Z12k

QN12 l 2m,Z12k
.

~4.1!

For central collisions at the same beam energy per part
the v factors will give unity. Employing the saddle-poin
approximation and setting the ratios of the det’s as unity
before, we can consider

FIG. 3. The inverse Albergo temperature, Eq.~3.2!, from the
canonical model is plotted as a function of the binding energy
ferenceB. The inset shows the predicted temperature in an
panded scale. The dash line atT55 MeV is the input temperature
to the calculation.
QN22 l 2m,Z22k

QN22 l ,Z22k
5

exp$2@ln~N22 l 2m!1lp~Z22k!#1 ln Zgr~ln ,lp!%

exp$2@ln8~N22 l !1lp8~Z22k!#1 ln Zgr~ln8 ,lp8!%
. ~4.2!

Similarly,

QN12 l 2m,Z12k

QN12 l ,Z12k
5

exp$2@ l̃n~N12 l 2m!1l̃p~Z12k!#1 ln Zgr~ l̃n ,l̃p!%

exp$2@ l̃n8~N12 l !1l̃p8~Z12k!#1 ln Zgr~ l̃n8 ,l̃p8!%
. ~4.3!
8-4
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We can now indicate how the grand canonical results
recovered. We setln5ln8 ,l̃n5l̃n8 , andln2l̃n5Dln then
the ratio achieves the exponential character:R5 exp(mDln).
Experimentally it is found that the relationshipR
5 exp(am) wherea is a constant independent ofl andk is
quite well respected. This is not so obvious from Eqs.~4.1!,
~4.2!, and~4.3!. We are therefore required to investigate th
near independence of the constanta.

If we write in Eq. ~4.2! ln85ln1Dln and expand
ln Zgr(ln8 ,lp8) in terms of lnZgr(ln ,lp) and keep lowest orde

corrections, the right-hand side of Eq.~4.2! is simply emln8.

In a similar fashion, the right-hand side of Eq.~4.3! is eml̃n8,
so that the ratioR of Eq. ~4.1! is exp@m(ln82l̃n8)# where, of

course, the values ofln8 ,l̃n8 are chosen to give neutron num
bersN22 l and N12 l and proton numbersZ22k and Z1
2k, respectively. Our next task is to verify thatln82l̃n8 is
approximately independent ofl andk.

We have four equations:

( ieiln81 j lp8v i , j5N22 l , ~4.4!

( jeiln81 j lp8v i , j5Z22k, ~4.5!

( iei l̃n81 j l̃p8v i , j5N12 l , ~4.6!

( jei l̃n81 j l̃p8v i , j5Z12k. ~4.7!

Let ln85l̃n81dln and lp85l̃p81dlp . From Eqs.~4.5! and
~4.7!, retaining terms to lowest order indlp and dln we
obtain

dlp( j 2ei l̃n81 j l̃p8v i , j1dln( i jei l̃n81 j l̃p8v i , j5Z22Z1.

~4.8!

In a similar fashion from Eqs.~4.4! and ~4.6! we can obtain

dln( i 2ei l̃n81 j l̃p8v i , j1dlp( i jei l̃n81 j l̃p8v i , j5N22N1.

~4.9!
.

d

04460
reEquations~4.8! and~4.9! can be solved fordln anddlp and
in the lowest order these value are independent ofl andk but
depend uponN2, Z2, N1, andZ1. To this orderR of Eq.
~4.1! is independent ofl and k as it is in the usual grand
canonical ensemble. This is seen to be obeyed in experim
to a good approximation.

Instead of Eqs.~4.4!–~4.9!, one may also consider th
following approximation trying to relate to the grand canon
cal ensemble. Recall thatln8 ,lp8 are the fugacities of a sys
tem which hasN22 l neutrons andZ22k protons. If we
denote the fugacities of the system which hasN2 neutrons
andZ2 protons byLN2 ,LZ2 and employ the same approx
mate methods used in the discussion leading to Eq.~2.11!,
we get ln85LN21( lC22kB2)/(B2

22A2C2). Similarly

l̃n8 ,l̃p8 refers to a system that hasN12 l neutrons andZ1

2k protons. In an obvious notation we also getl̃n85LN1

1( lC12kB1)/(B1
22A1C1). The quantity of interest is

ln82l̃n85LN22LN11
lC22kB2

B2
22A2C2

2
lC12kB1

B1
22A1C1

.

~4.10!

Because of cancellations in the above equation, results a
approximate the grand canonical result quite closely.

V. SUMMARY

In summary, we have explored several experimental
servables that are sensitive to the isospin effects in multifr
mentation. We find that the mirror ratios, isoscaling, a
temperatures calculated in canonical model behave simil
as those predicted with the grand canonical model with
significant difference: the temperature deduced from the
culated observables with the canonical model using the r
based on the grand canonical model can be significantly
ferent from the true temperatures.
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